
Using JavaScript in Viedoc

• In Viedoc Designer, JavaScript can be used to provide a lot more flexibility when working with the study design, by:
◦ setting Visibility conditions (for items, item groups, activities and events).

◦ writing data checks under the Validation tab for items.

◦ using functions/default values for items.

◦ writing conditions for Alerts.

• The syntax used is the JavaScript syntax, as described in ECMAScript 5.1 standards.

• The variables used are the items in the design, referred to as described in section Addressing Viedoc items.

• The operators used are listed in section Operators.

• An item from a different form (a cross form item) is addressed in Viedoc in the
following format: Event.Form.Item. It consists of three identifiers separated by
".":

◦ The event identifier - see Specifying the event below.

◦ The form identifier - see Specifying the form below.

◦ The item identifier - see Specifying the item below.

• Specifying the event

The event can be specified in one of the following ways:
◦ EventID - the Event ID as specified in the Event settings.

◦ EventID[StudyEventRepeatKey] - if the event is recurring and you want to specify a certain occurrence, this
is done by writing its StudyEventRepeatKey value within [].

◦ by using the indexers, for example EventID$FIRSTn - to identify the nth initiated event, in case the specified
form appears in multiple events. See Relative path section below for a complete description of the indexers.

• Specifying the form

The form can be specified in one of the following ways:
◦ FormID - the form ID as specified in Viedoc Designer under form settings.

◦ FormID[FormRepeatKey] - if the form is a repeating form and you want to specify a particular instance, this is
done by writing its FormRepeatKey value within [].

◦ FormID$ActivityID - optionally, it is possible to specify the activity, in case the respective form appears in
multiple activities within the same event.

E.g. DM$MORNING.WEIGHT - refers to the WEIGHT item in the DM form within the MORNING activity.

◦ FormID$ActivityID[FormRepeatKey] - if you want to specify both the activity and a particular instance of a
repeating form, this is specified in this format.

• Specifying the item

To access an item in the same form, it is sufficient to use the ItemID only, there is no need to specify the event and
form. In this case, when changing the value of the input item in Viedoc Clinic, the result item (depending on the input item)
will update its value at the same time.

Introduction1

Addressing Viedoc items2

In case of using the Event.Form.Item for an item within the same form, when changing the value of the input item in
Viedoc Clinic, the result item value will be updated only after saving the form and re-opening it.

To access an item in another form (so called cross form item) it is necessary to specify the event and the form.

EventID.FormID.ItemID

• Notes!

• An event is any event defined in workflow.
• The JavaScript language definition allows space between keywords, but spaces inside cross form variable are not
allowed, because, in order to provide values to execution context, Viedoc parses the whole expression for syntax as
specified above.

• Relative path

It is also possible to access cross form variable using relative path. Some special keywords are used in this case.
Keywords that can be appended to StudyEventDefId. These keywords can also be used without StudyEventDefId
to select any event.

$FIRSTn Select the first event with the form initiated, n is an
optional index and it goes forward (meaning that on
a timeline $FIRST2 comes before $FIRST3)

AE$FIRST.AEFORM.AEDATE
$FIRST.DM.HEIGHT
$FIRST2.DM.WEIGHT

$LASTn Select the last event with the form initiated, n is an
optional index and it goes backwards (meaning that
on a timeline $LAST2 comes after $LAST3)

AE$LAST.AEFORM.AEDATE

$PREVn Select the previous event with the form initiated, n
is an optional index and it goes backwards
(meaning that on a timeline $PREV2 comes after
$PREV3

WEIGHT < $PREV.DM.WEIGHT + 10

In addition

$THIS Select the current context event

Here comes an example of using the optional indexer (n in the above table):
On the Add patient form, we have a text item that should have the latest non-blank value of another text item (called
NAME) that is present on a form (called PROFILE) which is present on all scheduled (the first one called START) and
unscheduled events. The function below can be used on the item of the Add patient form:

if($LAST.PROFILE.NAME != null) return $LAST.PROFILE.NAME;
if($LAST2.PROFILE.NAME != null) return $LAST2.PROFILE.NAME;
if($LAST3.PROFILE.NAME != null) return $LAST3.PROFILE.NAME;
if($LAST4.PROFILE.NAME != null) return $LAST4.PROFILE.NAME;
if($LAST5.PROFILE.NAME != null) return $LAST5.PROFILE.NAME;
if(START.PROFILE.NAME != null) return START.PROFILE.NAME;
return 'NOT SET';

This will allow for the item being saved blank for the last 4 events, or else fallback to the value of the item on the start
event.

• Cross Event Date

Accessing the date of another event uses same principle as any cross form variable, use a fixed form id $EVENT and item
id EventDate.

AESTDT >= BL.$EVENT.EventDate Start date must be after BL visit date

• The below operators are common among other programming languages so if you have any programming experience, you
will be well at ease with the operators in JavaScript.

• Arithmetic Operators:

• + (addition)
• - (subtraction)
• * (multiplication)
• / (division)

• Comparison:

• == (equal to)
• != (not equal to)
• < (less than)
• > (greater than)
• <= (less than or equal)
• >= (greater than or equal)

• Boolean logic:

• && (AND)
• || (OR)
• ! (NOT)

• The following table lists the Viedoc items together with their JavaScript types and default values.

Viedoc item JavaScript type Default value

Single line text String null

Number Number null

Date Date object null

Time Date object null

Paragraph text String null

Checkbox Array of string/number* []

Radio button String/Number* null

Dropdown String/Number* null

File Object with following members:
◦ FileName (string) - name of the uploaded file

◦ FileSize (number) - file size in bytes

◦ FileHash (string) - MD5 hash of the file content

null

Range String representation of a range object (see more details in
section Viedoc provided functions > Range item specific
functions and properties).

null

*The item type for checkbox, radio button or dropdown is usually number, unless any of the choice codes is not a
number.

• In JavaScript data is passed in two ways: by value and by reference, respectively.

Operators3

Data types4

Pass by value vs. pass by reference5

• The following JavaScript data types are the ones that are "passed by value": Boolean, null, undefined, String, and Number.

This means that, when comparing two variables of the above mentioned types, their values will be compared. It means
that, for example if we have the following code:

var a = 3;
var b = 'def';
var x = a;
var y = b;

...then a will get the value 3, b will get the value 'def', x will get the value 3, y will get the value 'def'. Variables a and x have
the same value (3), and b and y have the same value ('def'). Still, all the four variables are independent. If we continue now
and change the value of a to 5, this will have no impact on var x, which still has the value of 3.

• The following JavaScript data types are "passed by reference": Array, Function, and Object.
This means that variables of these types get a reference to a certain value, not the value itself.
See Data types section for information on which Viedoc items are objects.

The date is always an object in JavaScript. If we have for example, the following:

var d=new Date();
var c=d;
d.setDate(10);

...then variable d is created as a date object, variable c is assigned to reference to the same value as d, and then each
and every time we change d, c will dynamically change as well, as it references the same value as d does. So, when we
set d to the 10th of the current month, c will automatically get the same value.

• When an expression is evaluated in a form context, following variables are accessible.

Variable name Data type Default value

{ItemDefId} As specified in data
types table in section
4

As specified in data types table in section 4

SubjectKey String null only for add patient

SiteSubjectSeqNo Number Sequence number of the subject in the site (starts with 1)

StudySubjectSeqNo Number Sequence number of the subject in the study (starts with 1)

SiteCode String The site code as set in Viedoc Admin

CountryCode String Two letter ISO country code of the site

StudyEventDefId String The ID of the study event as specified in the study workflow in Viedoc
Designer

StudyEventType String "Scheduled", "Unscheduled" or "Common"

StudyEventRepeatKey String The number that identifies a specific recurrence of a recurring event

FormDefId String The ID of the form as specified in Viedoc Designer > forms > settings

FormRepeatKey String The number that identifies the specific instance of a repeating form
within a specific activity

EventDate Date object Current date for common events, all other current events date

ActivityDefId String The ID of the activity as specified in the study workflow in Viedoc
Designer

{ItemDefId}__format Number Date types:

System variables6

0. Date only
1. Date and time
2. Day not known
3. Month not known

e.g. ICDATE_format

Numeric with decimals
n: precision/number of decimals

See also Controlling the format of a date/time variable .

• An expression in Viedoc is a JavaScript function body written in ECMAScript 5.1 standards
http://www.w3schools.com/js/js_syntax.asp

E.g.

return 2;

var a=2;
var b=3;
return a+b;

• Expressions can be written as single statement. Viedoc converts them into function body.

expression is converted to return (expression):

2

converts to

return (2);

VSDT <= now()

converts to

return (VSDT <= now());

• WARNING! When using loops (for, for/in, while, do/while) consider the following:
◦ Do not copy code (from internet) without reviewing it first and checking what it does.

◦ Make sure that you don't have endless loops.

◦ Consider browser compatibility when using javascript functions.

◦ Avoid inline/recursive functions, as they could cause memory problems in the system, both on the client as well
as on the server side.

• The boolean expressions are the expressions that return a
boolean value, either true or false. They are used in the
Visibility and Validation.

For JavaScript comparators and logical operators, you can refer to http://www.w3schools.com/js/js_comparisons.asp.

◦ true - everything with a real value is true:

100

Expressions7

Boolean expressions8

"Hello"

"false"

7 + 1 + 3.14

5 < 6

◦ false - everything without a real value is false:

0

Undefined

null

""

• E.g. A validation expression to check that the weight is > 65 for males ('M') and > 45 for females. Gender
(ItemID=GENDER) is collected in Patient Information form (FormID = PI) withing the Screening event (EventID = SCR) and
weight (ItemID = WEIGHT) is collected in Demographics form in each visit. Below is the edit check written for the WEIGHT
item:

if (SCR.PI.GENDER == 'M')
return WEIGHT > 65;
else
return WEIGHT > 45;

• Date comparison

Dates in JavaScript are objects and the available comparators are > , >= ,
< and <=.

If you need to use == or !=, convert to string and compare, as in example (1) in the image, except for the case when
checking for NULL. When checking for NULL, do not convert as this would lead to a change of the value during conversion
from NULL to something different.

Note! Remember to check for NULL before invoking any function on an object.

See the Pass by value vs. pass by reference section for an explanation on working with objects.

• File properties

The metadata values of the file datatype can be accessed in expressions, as shown in the image at (2).

• The default value expressions are executed and the resulting value is set only when the form is initialized.

Note! If there is visibility condition set on item with function or default value, whenever item becomes hidden, their value is
reset to default value.

• date(dateString)

Converts date string to JavaScript date object. The dateString must be in "yyyy-mm-dd" format.

• today()

Returns current site date.

• now()

Default value9

Viedoc provided functions10

Returns current site date and time (in site timezone).

• addDays (date, days)

Add the specified number of days to the specified date object.

• age (fromDate, toDate)

Returns the age of the subject based on the provided input dates, for example fromDate = date of birth and toDate =
date of informed consent.

The function implementation is shown below:

function age(DMDOB, DMIC) {
 if (!DMIC || !DMDOB)
 return null;

 var ageMilli = DMIC - DMDOB;

 var ag = ageMilli / 1000 / 3600 / 24 / 365.25;

 return ag;
}

• bmi (weightInKg, heightInCM)

Returns the bmi (body mass index) calculated based on the provided weight (in kg) and height (in cm). The function
implementation is shown below:

function bmi(weight, height) {
 if (weight <= 0 || height <= 0)
 return null;
 var finalBmi = weight / (height / 100 * height / 100);

 return finalBmi;
}

• days (DateA, DateB)

Calculates the number of days between 2 dates provided as input parameters: DateA and DateB, as DateA - DateB.

Note! Please note that the result is always rounded to the nearest integer (see function implementation below), and when
using at least one input parameter that contains both date and time, this means that, for example, for a difference of 1.3
days the function will return 1, and for a difference of 1.7 days the function will return 2.

The function implementation is shown below:

function days(endDate, startDate) {
 if (!startDate || !endDate)
 return null;

 var oneDay = 24 * 60 * 60 * 1000; //
hours*minutes*seconds*milliseconds

 startDate = date(startDate);
 endDate = date(endDate);

 var diffDays = Math.round((endDate.getTime() - startDate.getTime()) / (oneDay));

 return diffDays;
}

• hours(DateTimeA, DateTimeB)

Calculates the number of hours between 2 "date and time" items provided as input parameters: DateTimeA and
DateTimeB, as DateTimeA - DateTimeB.

The function implementation is shown below:

function hours(endDateTime, startDateTime) {
 if (!startDateTime || !endDateTime);
 return null;

 var oneHour = 60 * 60 * 1000; // minutes*seconds*milliseconds

 var diffHours = Math.round((endDateTime.getTime() - startDateTime.getTime()) /
(oneHour));

 return diffHours;
}

• minutes(DateTimeA, DateTimeB)

Calculates the number of minutes between 2 "date and time" items provided as input parameters: DateTimeA and
DateTimeB, as DateTimeA - DateTimeB.

The function implementation is shown below:

function minutes(endDateTime, startDateTime) {
 if (!startDateTime || !endDateTime);
 return null;

 var oneMinute = 60 * 1000; // seconds*milliseconds

 var diffMinutes = Math.round((endDateTime.getTime() - startDateTime.getTime()) /
(oneMinute));

 return diffMinutes;
}

• Array.contains function

[].contains(x) is a special function used to check if an item is present in array.

Examples:

◦ With checkboxes:

INCL.contains(1) || EXCL.contains(2)

◦ Skip validation in all 3 activities:

var skipActivities = ['V1A1', 'V2A1', 'V3A1'];

if (skipActivities.contains(ActivityDefId))
 return true;;
...

• Range item specific functions and properties

The range item is the string representation of a range object. The functions that can be used to convert the respective
string to a range object and vice versa are described below.The properties available for the range object are:

RangeObject*.Lower - the lower limit of the range - number.

RangeObject*.LowerFormat - the number of decimals used for the lower limit of the
range

- number.

RangeObject*.Upper - the upper limit of the range - number.

RangeObject*.UpperFormat - the number of decimals used for the upper limit of the
range

- number.

RangeObject*.Comparator - the comparator used to define the range. The available
comparators are:

• InclusiveInBetween - defines a range beween a
lower and an upper defined limits.
• LessThan
• LessThanOrEqualTo

- string.

• GreaterThan
• GreaterThanOrEqualTo
• EqualTo

Note! When using the comparator in functions, make sure
to write it between quotes, e.g. "LessThan". It is case
sensitive, so make sure to type it in exactly as stated
above.

RangeObject*.StringValue - the string representation of the respective range item - string.

*RangeObject can be obtained as output of the first two functions described below.

The functions available to be used in conjunction with the range item are described in the table below.

The inRange function can be used to verify if a certain value of a numeric item is included in a specified range. The
numeric value is specified by the numeric item ID and the range is specified either by the range item ID or by the string
representation of the respective range item.

Function Input Output Example
parseRangeValue
(value)

value as string range object, null if the input
is empty or if it cannot be
parsed.

• parseRangeValue("[1.3,2.0]")
• parseRangeValue
(range_item_ID)

createRangeValue
(lower,
comparator,upper)

lower limit as string or
float, comparator as
string, upper limit as
string or float

range object, null if the input
is empty or if it cannot be
parsed.

createRangeValue("1.3",
"InclusiveInBetween", "2.0")

getRangeValue
(rangeValue)

rangeValue as range
object

string respresentation of the
range defined by the input
range object

function() {
var rangeValue =
createRangeValue("1.3",
"InclusiveInBetween", "2.0");
return getRangeValue
(rangeValue);
}

inRange
(rangeValue,
numericValue)

range value as string or
range object, numeric
value

• boolean value showing if the
input numeric value is within
the input range (true) or not
(false).
• true if at least one of the
input parameters is missing.
• false if one of the input
parameters is invalid.

• inRange(range_item_ID,
numeric_item_ID)
• inRange("[1,3]",
numeric_item_ID)

• The ECMAScript contains math objects that can be used for mathematical calculations.

• For a Viedoc item it is possible to write a function in order to
assign a particular value to it, either by writing a function that
would return a result depending on other items/conditions, or
by assigning a default value, as illustrated in the image.

• Notes!

Functions that returns a value to form item must match the
data type as specified in Data types section.

Despite what was earlier mentioned about the matching of data types, nothing will prevent you from writing a non-matching
function. Please note that, in case of returning a number with decimals or a date object to a text field, the decimal

Math library11

Function in item settings12

separator or the date format will be in the format configured on the server, for those cases when the respective function is
executed on server side, i.e:

• when applying a new revision.
• for the "auto-update" forms.

• To debug you can use one of the following in your expression:
◦ debugger; statement.

◦ console.log('something');

The above statements will have effect only when opening the browser’s developer tools while entering data to the
respective form in Viedoc Clinic.

For more information about debugging please refer to http://www.w3schools.com/js/js_debugging.asp.

Notes!

• When debugging, you cannot use single line statements.
• You cannot debug the visit/activity visibility expression as they are run on server.

• During Save changes and VALIDATE operations in Viedoc Designer, the expressions are validated using a compiler,
which would find most of the errors. However, since JavaScript is a dynamic language, not everything can be validated.
For example, AGE.foo () will not throw an error, because AGE is a variable in a form and the compiler does not know its
type.

Note! The designer must test the expression in all the possible paths using either preview or Viedoc Clinic.

Debugging your expression13

Validation14

