“EE VIEDOC |
— elearning

T Using JavaScript in Viedoc

Expressions

« An expression in Viedoc is a JavaScript function body written in ECMAScript 5.1 standards http://www.ecma-
international.org/ecma-262/5.1
http://www.w3schools.com/js/js_syntax.asp

E.g.
return 2;
var a=2;

var b=3;
return a+b;

» Expressions can be written as single statement. Viedoc converts them into function body.
expression is converted to return (expression)
2 toreturn (2);
"hel | o"
2+2
2>3 to return (2>3);
VSDT <= now()
converts to

return (VSDT <= now());

* WARNING! When using loops (for, for/in, while, do/whil e)consider the following:
> Do not copy code (from internet) without reviewing it first and checking what it does.

o Make sure that you don't have endless loops.
o Consider browser compatibility when using javascript functions.

> Avoid inline/recursive functions, as they could cause memory problems in the system, both on the client as well
as on the server side.

Boolean expressions

» The boolean expressions are the expressions that return a ;
boolean value, either t r ue or f al se. They are used in the
Visibility and Validation

For JavaScript comparators and logical operators, you can refer to http://www.w3schools.com/js/js_comparisons.asp.

o true - everything with a real value is t r ue:
100

"Hel | o"

"fal se"

7+ 1+ 3.14

5<6

> fal se - everything without a real value is f al se:

0

Undef i ned

nul |

« Date comparison

Dates in JavaScript are objects and the available comparators are >, >=,

< and <=.

If you need to use == or !=, convert to string and compare, as in example (1) in the image, except for the case when
checking for NULL. When checking for NULL, do not convert as this would lead to a change of the value during conversion

from NULL to something different.

Note! Remember to check for NULL before invoking any function on an object.

* File properties

The metadata values of the file datatype can be accessed in expressions, as shown in the image at (2).

Value expressions

« The value expressions are those expressions that return a

value.

They are used in Viedoc for function and for the default value.

Note! Expressions that returns a value to form item must

match the data type as specified in data type table in the below

section.

Data types

» The following table lists the Viedoc items together with their JavaScript types and default values.

Viedoc item

Single line text
Number

Date

Time
Paragraph text
Checkbox
Radio button

Dropdown

JavaScript type

String

Number

Date

Date

String

Array of string/number*
String/Number*

String/Number*

AGEGROUP Settings
General Visibility Validation f Output
@) Function

Default Value

Function logic (JavaScript) (?)
function getValue(){

function getvalue(){

today()

Default Value or Java Script expression (?)
function getValue(

Default value

null
null
null
null
null
[]

null

null

File Object with following members: null
> FileName (string) - name of the uploaded file

o FileSize (number) - file size in bytes

o FileHash (string) - MD5 hash of the file content

Range Object with following members: null
o Lower (number) - the lower limit of the range

o LowerFormat (number) - the number of decimals
used for the lower limit of the range

o Upper (number) - the upper limit of the range

o UpperFormat (number) - the number of decimals
used for the upper limit of the range

o Comparator (string) - the comparator used to define
the range. The available comparators are:

eI ncl usi vel nBet ween - defines a
range beween a lower and an upper
defined limits.

e LessThan

e LessThanOr Equal To

* GreaterThan

¢ Great er ThanOr Equal To

* Equal To

*The item type for checkbox, radio button or dropdown is usually number, unless any of the items is not a number.

Function

» Functions are evaluated and the resulting value is set to the item in the following scenarios:
o Initialize form

> During form edit, when any dependencies change.
> When the form is upgraded while applying a revision.

o When Auto update option is checked on a form and a cross-form dependant variable value is changed.

@ Default value
« The default value expressions are executed and the resulting value is set only when the form is initialized.

Note! If there is visibility condition set on item with function or default value, whenever item becomes hidden, their value is
reset to default value.

Context variables

« When an expression is evaluated in a form context, following variables are accessible.

Variable name Data type Default value
{1tenDef | d} As specified in data As specified in data types table in section 4
types table in section 4
Subj ect Key String null only for add patient
Si t eSubj ect SeqNo Number Sequence number of the subject in the site (starts with 1)

St udy Subj ect SeqNo Number Sequence number of the subject in the study (starts with 1)

Si t eCode String The site code as set in Viedoc Admin

Count ryCode String Two letter ISO country code of the site

St udyEvent Defld String The ID of the study event as specified in the study workflow in Viedoc
Designer

St udyEvent Type String "Scheduled", "Unscheduled" or "Common"

For mDef I d String The ID of the form as specified in Viedoc Designer > forms > settings.

Event Dat e Date object Current date for common events, all other current events date

ActivityDefld String The ID of the activity as specified in the study workflow in Viedoc
Designer

{ItenDef | d} Number Date types:

__format
0. Date only

1. Date and time

2. Day not known

3. Month not known
e.g. | CDATE__f or mat

Numeric with decimals
n: precision/number of decimals

Function logic (JavaScript) (7)
Cross form variables function getValue(){
* You can access any other form item in an expression. -
Syntax: { Event Def | d} . { For nDef I d}. { It enDef | d}
E.g. A validation expression to check that the weight is > 65 for males 1

and > 45 for females. Gender is collected in Patient Information and
weight is collected in Demographics in each visit.

if (SCR PlI.GENDER == 'M)
return WEl GHT > 65;
el se

return WElI GHT > 45;
Notes!

* An event is any event defined in workflow.

» The JavaScript language definition allows space between keywords, but spaces inside cross form variable are not
allowed, because, in order to provide values to execution context, Viedoc parses the whole expression for syntax as
specified above.

* Relative path
It is also possible to access cross form variable using relative path. Some special keywords are used in this case.

Keywords that can be appended to St udyEvent Def | d. These keywords can also be used without St udyEvent Def | d
to select any event.

$FI RSTn Select the first event, n is an optional index and it AE$FI RST. AEFORM AEDATE
goes forward (meaning that on a timeline $FI RST2 $FI RST. DM HEI GHT
comes before $FI RST3) $FI RST2. DM WEI GHT
$LASTN Select the last event, n is an optional index and it AESLAST. AEFORM AEDATE

goes backwards (meaning that on a timeline
$LAST2 comes after SLAST3)

$PREVN Select the previous event, n is an optional index VEI GHT < $PREV. DM WEI GHT + 10
and it goes backwards (meaning that on a timeline
$PREV2 comes after $PREV3

In addition

$THI S Select the current context event

If a form appears in multiple activities in same event, ${ Act i vi t yDef | d} can be appended to select a specific form
instance.

E.g. VEI GHT <= $THI S. DMBMORNI NG. VEEI GHT

Here comes an example of using the optional indexer (n in the above table):

On the Add patient form, we have a text item that should have the latest non-blank value of another text item (called
NAME) that is present on a form (called PROFILE) which is present on all scheduled (the first one called START) and
unscheduled events. The function below can be used on the item of the Add patient form:

i f ($LAST. PROFI LE. NAME != null) return $LAST. PROFI LE. NAME;

i f ($LAST2. PROFI LE. NAME != null) return $LAST2. PROFI LE. NAME;
i f ($LAST3. PROFI LE. NAME ! = null) return $LAST3. PROFI LE. NAME;
i f ($LAST4. PROFI LE. NAME ! = null) return $LAST4. PROFI LE. NAME;
i f ($LAST5. PROFI LE. NAME ! = null) return $LAST5. PROFI LE. NAME;
i f (START. PROFI LE. NAME ! = null) return START. PROFI LE. NAME;
return ' NOT SET';

This will allow for the item being saved blank for the last 4 events, or else fallback to the value of the item on the start
event.

¢ Cross Event Date

Accessing the date of another event uses same principle as any cross form variable, use a fixed form id $EVENT and item
id Event Dat e.

AESTDT >= BL. $EVENT. Event Dat e Start date must be after BL visit date

@ Math library

* The ECMAScript contains math objects that can be used for mathematical calculations.

[10 Jiedoc provided functions

Function Description / Implementation
dat e(dat eStri ng) Converts date string to JavaScript date object. The dateString must be in
"yyyy-mm-dd" format

t oday() Returns current date in Viedoc Clinic
now() Returns current date and time in Viedoc Clinic
addDays (date, days) Add days to the date object
age (fronDate, toDate) function age(DVMDOB, DM C) {

if (!DMC || ! DVDOB)

return null;
var ageMIIli = DM C - DMVDOB;

var ag = ageMIIli / 1000 / 3600 / 24 | 365. 25;

return ag;

}
bm (weightlnKg, heightlnCM) function bm (weight, height) {
if (weight <= 0 || height <= 0)
return null;
var final Bm = weight / (height / 100 * height /
100);
return final Bm ;
}
days (startDate, endDate) function days(startDate, endDate) {
if (!startDate || !endDate)
return null;
var oneDay = 24 * 60 * 60 * 1000; //
hour s*m nut es*seconds*ni | | i seconds

startDate = date(startDate);
endDat e = date(endDat e);

var diffDays = Math.round((startDate.getTinme() -
endDate. getTine()) / (oneDay));

return diffDays;
}
hours(startDateTine, endDateTinme) function hours(startDateTi ne, endDateTinme) {
if (!startDateTinme || !endDateTine);
return null;

var oneHour = 60 * 60 * 1000; //
m nut es*seconds*m | | i seconds

var diffHours = Math.round((startDateTine. getTi ne
() - endDateTinme.getTine()) / (oneHour));

return diffHours;

}
m nut es(startDateTine, function mnutes(startDateTi me, endDateTine) {
endDat eTi e) if (!startDateTine || !endDateTine);
return null;
var oneM nute = 60 * 1000; //
seconds*mi | | i seconds

var di ffM nutes = Math.round
((startDateTine.getTinme() - endDateTine.getTinme()) /
(oneM nute));

return diffM nutes;

» Array.contains function
[1.contains(x) is aspecial function used to check if an item is present in array.
Examples:
o With checkboxes:

I NCL. contains(1) || EXCL.contains(2)

o Skip validation in all 3 activities:

var skipActivities = ['V1IAL', 'V2Al', 'V3Al'];

if (skipActivities.contains(ActivityDefld))
return true;;

Debugging your expression

» To debug you can use one of the following in your expression:
o debugger; statement.

o consol e.l og(' sonething');

The above statements will have effect only when opening the browser’s developer tools while entering data to the
respective form in Viedoc Clinic.

For more information about debugging please refer to http://www.w3schools.com/js/js_debugging.asp.

Notes!

* When debugging, you cannot use single line statements.
* You cannot debug the visit/activity visibility expression as they are run on server.

Validation

« During Save changes and VALIDATE operations in Viedoc Designer, the expressions are validated using a compiler,
which would find most of the errors. However, since JavaScript is a dynamic language, not everything can be validated.
For example, AGE. f oo () will not throw an error, because AGE is a variable in a form and the compiler does not know its

type.

Note! The designer must test the expression in all the possible paths using either preview or Viedoc Clinic.

