
Using JavaScript in Viedoc

• An expression in Viedoc is a JavaScript function body written in ECMAScript 5.1 standards http://www.ecma-
international.org/ecma-262/5.1
http://www.w3schools.com/js/js_syntax.asp

E.g.

return 2;

var a=2;
var b=3;
return a+b;

• Expressions can be written as single statement. Viedoc converts them into function body.

expression is converted to return (expression)

2 to return (2);

"hello"

2+2

2>3 to return (2>3);

VSDT <= now()

converts to

return (VSDT <= now());

• WARNING! When using loops (for, for/in, while, do/while) consider the following:
◦ Do not copy code (from internet) without reviewing it first and checking what it does.

◦ Make sure that you don't have endless loops.

◦ Consider browser compatibility when using javascript functions.

◦ Avoid inline/recursive functions, as they could cause memory problems in the system, both on the client as well
as on the server side.

• The boolean expressions are the expressions that return a
boolean value, either true or false. They are used in the
Visibility and Validation

For JavaScript comparators and logical operators, you can refer to http://www.w3schools.com/js/js_comparisons.asp.

◦ true - everything with a real value is true:

100

"Hello"

Expressions1

Boolean expressions2

"false"

7 + 1 + 3.14

5 < 6

◦ false - everything without a real value is false:

0

Undefined

null

""

• Date comparison

Dates in JavaScript are objects and the available comparators are > , >= ,
< and <=.

If you need to use == or !=, convert to string and compare, as in example (1) in the image, except for the case when
checking for NULL. When checking for NULL, do not convert as this would lead to a change of the value during conversion
from NULL to something different.

Note! Remember to check for NULL before invoking any function on an object.

• File properties

The metadata values of the file datatype can be accessed in expressions, as shown in the image at (2).

• The value expressions are those expressions that return a
value.
They are used in Viedoc for function and for the default value.

Note! Expressions that returns a value to form item must
match the data type as specified in data type table in the below
section.

• The following table lists the Viedoc items together with their JavaScript types and default values.

Viedoc item JavaScript type Default value

Single line text String null

Number Number null

Date Date null

Time Date null

Paragraph text String null

Checkbox Array of string/number* []

Radio button String/Number* null

Dropdown String/Number* null

Value expressions3

Data types4

File Object with following members:
◦ FileName (string) - name of the uploaded file

◦ FileSize (number) - file size in bytes

◦ FileHash (string) - MD5 hash of the file content

null

Range Object with following members:
◦ Lower (number) - the lower limit of the range

◦ LowerFormat (number) - the number of decimals
used for the lower limit of the range

◦ Upper (number) - the upper limit of the range

◦ UpperFormat (number) - the number of decimals
used for the upper limit of the range

◦ Comparator (string) - the comparator used to define
the range. The available comparators are:

• InclusiveInBetween - defines a
range beween a lower and an upper
defined limits.
• LessThan
• LessThanOrEqualTo
• GreaterThan
• GreaterThanOrEqualTo
• EqualTo

null

*The item type for checkbox, radio button or dropdown is usually number, unless any of the items is not a number.

• Functions are evaluated and the resulting value is set to the item in the following scenarios:
◦ Initialize form

◦ During form edit, when any dependencies change.

◦ When the form is upgraded while applying a revision.

◦ When Auto update option is checked on a form and a cross-form dependant variable value is changed.

• The default value expressions are executed and the resulting value is set only when the form is initialized.

Note! If there is visibility condition set on item with function or default value, whenever item becomes hidden, their value is
reset to default value.

• When an expression is evaluated in a form context, following variables are accessible.

Variable name Data type Default value

{ItemDefId} As specified in data
types table in section 4

As specified in data types table in section 4

SubjectKey String null only for add patient

SiteSubjectSeqNo Number Sequence number of the subject in the site (starts with 1)

StudySubjectSeqNo Number Sequence number of the subject in the study (starts with 1)

Function5

Default value6

Context variables7

SiteCode String The site code as set in Viedoc Admin

CountryCode String Two letter ISO country code of the site

StudyEventDefId String The ID of the study event as specified in the study workflow in Viedoc
Designer

StudyEventType String "Scheduled", "Unscheduled" or "Common"

FormDefId String The ID of the form as specified in Viedoc Designer > forms > settings.

EventDate Date object Current date for common events, all other current events date

ActivityDefId String The ID of the activity as specified in the study workflow in Viedoc
Designer

{ItemDefId}
__format

Number Date types:

0. Date only
1. Date and time
2. Day not known
3. Month not known

e.g. ICDATE__format

Numeric with decimals
n: precision/number of decimals

• You can access any other form item in an expression.

Syntax: {EventDefId}.{FormDefId}.{ItemDefId}

E.g. A validation expression to check that the weight is > 65 for males
and > 45 for females. Gender is collected in Patient Information and
weight is collected in Demographics in each visit.

if (SCR.PI.GENDER == 'M')
return WEIGHT > 65;
else
return WEIGHT > 45;

Notes!

• An event is any event defined in workflow.
• The JavaScript language definition allows space between keywords, but spaces inside cross form variable are not
allowed, because, in order to provide values to execution context, Viedoc parses the whole expression for syntax as
specified above.

• Relative path

It is also possible to access cross form variable using relative path. Some special keywords are used in this case.
Keywords that can be appended to StudyEventDefId. These keywords can also be used without StudyEventDefId
to select any event.

$FIRSTn Select the first event, n is an optional index and it
goes forward (meaning that on a timeline $FIRST2
comes before $FIRST3)

AE$FIRST.AEFORM.AEDATE
$FIRST.DM.HEIGHT
$FIRST2.DM.WEIGHT

$LASTn Select the last event, n is an optional index and it
goes backwards (meaning that on a timeline
$LAST2 comes after $LAST3)

AE$LAST.AEFORM.AEDATE

$PREVn Select the previous event, n is an optional index
and it goes backwards (meaning that on a timeline
$PREV2 comes after $PREV3

WEIGHT < $PREV.DM.WEIGHT + 10

Cross form variables8

In addition

$THIS Select the current context event

If a form appears in multiple activities in same event, ${ActivityDefId} can be appended to select a specific form
instance.

E.g. WEIGHT <= $THIS.DM$MORNING.WEIGHT

Here comes an example of using the optional indexer (n in the above table):
On the Add patient form, we have a text item that should have the latest non-blank value of another text item (called
NAME) that is present on a form (called PROFILE) which is present on all scheduled (the first one called START) and
unscheduled events. The function below can be used on the item of the Add patient form:

if($LAST.PROFILE.NAME != null) return $LAST.PROFILE.NAME;
if($LAST2.PROFILE.NAME != null) return $LAST2.PROFILE.NAME;
if($LAST3.PROFILE.NAME != null) return $LAST3.PROFILE.NAME;
if($LAST4.PROFILE.NAME != null) return $LAST4.PROFILE.NAME;
if($LAST5.PROFILE.NAME != null) return $LAST5.PROFILE.NAME;
if(START.PROFILE.NAME != null) return START.PROFILE.NAME;
return 'NOT SET';

This will allow for the item being saved blank for the last 4 events, or else fallback to the value of the item on the start
event.

• Cross Event Date

Accessing the date of another event uses same principle as any cross form variable, use a fixed form id $EVENT and item
id EventDate.

AESTDT >= BL.$EVENT.EventDate Start date must be after BL visit date

• The ECMAScript contains math objects that can be used for mathematical calculations.

•
Function Description / Implementation

date(dateString) Converts date string to JavaScript date object. The dateString must be in
"yyyy-mm-dd" format

today() Returns current date in Viedoc Clinic

now() Returns current date and time in Viedoc Clinic

addDays (date, days) Add days to the date object

age (fromDate, toDate) function age(DMDOB, DMIC) {
 if (!DMIC || !DMDOB)
 return null;

 var ageMilli = DMIC - DMDOB;

 var ag = ageMilli / 1000 / 3600 / 24 / 365.25;

Math library9

Viedoc provided functions10

 return ag;
}

bmi (weightInKg, heightInCM) function bmi(weight, height) {
 if (weight <= 0 || height <= 0)
 return null;
 var finalBmi = weight / (height / 100 * height /
100);

 return finalBmi;
}

days (startDate, endDate) function days(startDate, endDate) {
 if (!startDate || !endDate)
 return null;

 var oneDay = 24 * 60 * 60 * 1000; //
hours*minutes*seconds*milliseconds

 startDate = date(startDate);
 endDate = date(endDate);

 var diffDays = Math.round((startDate.getTime() -
endDate.getTime()) / (oneDay));

 return diffDays;
}

hours(startDateTime, endDateTime)function hours(startDateTime, endDateTime) {
 if (!startDateTime || !endDateTime);
 return null;

 var oneHour = 60 * 60 * 1000; //
minutes*seconds*milliseconds

 var diffHours = Math.round((startDateTime.getTime
() - endDateTime.getTime()) / (oneHour));

 return diffHours;
}

minutes(startDateTime,
endDateTime)

function minutes(startDateTime, endDateTime) {
 if (!startDateTime || !endDateTime);
 return null;

 var oneMinute = 60 * 1000; //
seconds*milliseconds

 var diffMinutes = Math.round
((startDateTime.getTime() - endDateTime.getTime()) /
(oneMinute));

 return diffMinutes;
}

• Array.contains function

[].contains(x) is a special function used to check if an item is present in array.

Examples:

◦ With checkboxes:

INCL.contains(1) || EXCL.contains(2)

◦ Skip validation in all 3 activities:

var skipActivities = ['V1A1', 'V2A1', 'V3A1'];

if (skipActivities.contains(ActivityDefId))
 return true;;
...

• To debug you can use one of the following in your expression:
◦ debugger; statement.

◦ console.log('something');

The above statements will have effect only when opening the browser’s developer tools while entering data to the
respective form in Viedoc Clinic.

For more information about debugging please refer to http://www.w3schools.com/js/js_debugging.asp.

Notes!

• When debugging, you cannot use single line statements.
• You cannot debug the visit/activity visibility expression as they are run on server.

• During Save changes and VALIDATE operations in Viedoc Designer, the expressions are validated using a compiler,
which would find most of the errors. However, since JavaScript is a dynamic language, not everything can be validated.
For example, AGE.foo () will not throw an error, because AGE is a variable in a form and the compiler does not know its
type.

Note! The designer must test the expression in all the possible paths using either preview or Viedoc Clinic.

Debugging your expression11

Validation12

